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The Effect of Three-Body Interactions on 
Thermal Desorption Spectra 
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Thermal desorption spectra are calculated for a one-dimensional chain and for 
a two-dimensional square lattice using the transfer-matrix technique and Monte 
Carlo simulations. Lateral interactions of adsorbed particles cause a splitting of 
spectra. The repulsive three-body interactions are shown to lead to an inequality 
of the integral intensities of the thermal desorption peaks. 
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1. I N T R O D U C T I O N  

In the case of chemisorption of atoms and simple molecules on close- 
packed faces of single crystals, the assumption of surface uniformity is often 
justified, i.e., it may be assumed that adsorbed particles are distributed 
among equivalent elementary cells. The nonideality of the adsorbed layer 
in this case is due to lateral interactions between adsorbed particles. In 
statistical physics, a system of interacting particles distributed among 
equivalent cells is called a lattice gas. It turns out that many phenomena 
occurring on the surfaces of solids (kinetics of adsorption and desorption, 
kinetics of chemical reactions, surface diffusion, phase diagrams, surface 
reconstruction induced by adsorption) can be described in the framework 
of the lattice-gas model. (~) 

The general formulas for describing various phenomena in the lattice- 
gas model have, as a rule, a simple form. However, these formulas are not 
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so much a solution as a formulation of the problem, since the main 
difficulty lies in calculating the various probabilities appearing in these 
formulas. Indeed, the lattice-gas model is well known to be exactly soluble 
only in exceptional casesJ 2) The kinetics of real surface processes is usually 
studied at comparatively high temperatures. In this temperature range, the 
cluster method is suitable for calculating the rates of elementary processes. 
As a rule, the practical calculations take into account lateral interactions 
only between nearest neighbors and the mean-field, the quasichemical, or 
the Bethe Peierls approximation are used. (3-7) More precise results may be 
derived using Monte Carlo simulations. (s-l~ The Monte Carlo method is 
still not used widely for describing the kinetics of elementary surface 
processes, because this method is rather laborious. However, further 
simulations of the surface rate processes will aparently be linked with more 
extensive use of the Monte Carlo method. 

In a previous paper, (1~ we compared thermal desorption spectra 
calculated using analytical approximations (the quasichemical approxima- 
tion for the nearest-neighbor interactions and the mean-field approxima- 
tion for the next-nearest-neighbor interactions) and Monte Carlo simula- 
tions. The results were shown to be in good agreement when order disor- 
der transitions do not occur in the adsorbed overlayer during thermal 
desorption. The objective of the present paper is to study the effect of three- 
body lateral interactions on thermal desorption spectra. The paper is 
organized as follows. General equations for describing the kinetics of 
monomolecular desorption are presented in Section 2. Desorption from a 
one-dimensional chain is considered in Section 3; the one-dimensional 
problem is solved exactly using the transfer-matrix technique. Desorption 
from a two-dimensional adlayer is analyzed in Section 4 using Monte Carlo 
simulations. 

2. GENERAL EQUATIONS 

General equations for describing the kinetics of various surface rate 
processes are derived in the framework of the lattice-gas model in ref. 5. In 
particular, the kinetics of monomolecular desorption A s --* Ag is described 
a s  

dO/dt = - k a O  (1) 

kd = v ~ PA.i exp{ - [Ed(0) + A e i ] / T ) }  
i 

(2) 

where 0 is coverage, v is the preexponential factor, Ed(0) is the activation 
energy for desorption at low coverages, PA,i is the probability that an 
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adsorbed particle has the environment marked by index i, A~i = e * -  ei, ei 
is the lateral interaction of molecule A and its environment (repulsive inter- 
actions are assigned positive values), and e* is the lateral interaction of the 
activated complex A* with the same environment; the Boltzmann constant 
is set to unity. Using Eqs. (1) and (2), we assume that the surface is 
uniform and that a given cell is either vacant or occupied by a single 
adsorbed particle; the precursor states are neglected. 

The interaction e* is usually believed to be weak compared to other 
interactions. Neglecting this interaction and assuming the adsorbed over- 
layer to be in thermodynamic equilibrium, we can rewrite Eq. (2) a s  (6'13) 

kd = v exp{ -- lEd(O) + #I/T}(1 - 0)/0 (3) 

where # is the chemical potential, known to be related to the energy of the 
particles. Using Eq. (3), we assume that the energy of a particle equals zero 
in the case when the sites neighboring to this particle are empty. 

Equation (3) is convenient for analytical calculations. On the other 
hand, Monte Carlo simulations can be carried out using directly Eq. (2), 
i.e., using the following expression for the probability of a particle at site i 
to desorb in the interval (t, t + At):  

P ( d t )  = A t  v e x p ( - E ~ / T )  (4) 

with 

g i d = g d ( O ) - - ~ l  Z ?lj 
jNNi 

jNNNi j, kNi 

where nj and nk are the occupation numbers of sites j and k, e l and e2 are 
the nearest-neighbor and next-nearest-neighbor lateral interactions, respec- 
tively, and e~ is the three-body interaction defined in detail in the following 
sections. 

3. D E S O R P T I O N  F R O M  A O N E - D I M E N S I O N A L  A D L A Y E R  

The one-dimensional problem is of interest from the theoretical 
standpoint because this problem can be solved exactly using the transfer- 
matrix technique. (z~ Besides, desorption in real systems can be considered 
as one-dimensional if lateral interactions are strongly anisotropic. 
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The one-dimensional Hamiltonian can be defined by 

H =  ~ (~lnini+ ~ + ,~2nirti+2 -t.- e~nini+ lni+ 2) (6) 
i 

where el, e2, and et are lateral interactions explained in Fig. 1. 
The grand partition function for the Hamiltonian (6) can be calculated 

as follows, Let us consider the chain containing n sites and introduce the 
four-dimensional vector Z ,  defined so that its _components are the grand 
partition functions for the chain with fixed occupation numbers of two sites 
located on the right end of the chain. In particular, Zn(1), Zn(2), Zn(3), 
and Z,(4)  are the partition functions for occupation numbers (1, 1), (1, 0), 
(0, 1 ), and (0, 0), respectively. Adding an additional site to the right end of 
the chain and examining all possible occupation numbers of sites n -  1, n, 
and n + 1, we have the recursive relationship 

Zn + 1 = M Z n  (7) 

where M is the 4 x 4 transfer matrix with the following nonzero elements: 

Mll  = exp [(/~ - el - e 2  - e t ) /T]  

M12 = exp [(# - e l ) /T]  

M23 = exp [ (# - e2)/T] 

M24 = exp(p/T) 

M31 = M3z = M43 = M 4 4  = 1 

The matrix M can be represented as 

M =  S D S  --1 (8) 

I 1 1 

O 0  0 �9 0 0 �9 0 �9 �9 �9 O 0  O � 9  

E1 = E1 ~'1 = E1 + E2 + E t  E1 = 2 ~1 + E t  

Fig. 1. 

�9 0 0 0 �9 0 0 0 �9 �9 

E 1 ~ 2E 1 + E 2 + 2E t E 1 = 2 E 1 + 2 E 2 + 3 E t 

Particles on the one-dimensional  lattice. Occupied sites are indicated by solid circles, 
empty sites by empty  circles. E 1 is the energy of particle 1. 
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where S is the nonsingular matrix and D is the diagonal matrix with 
elements that are equal to eigenvalues of the matrix M. Substituting Eq. (8) 
into Eq. (7), one can easily derive that at n ~ oo the grand partition func- 
tion Z is expressed as 

In Z = n In 2 (9) 

where 2 is the largest eigenvalue of M. Thus, the calculation of the grand 
partition function is reduced to the calculation of the largest eigenvalue of 
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Fig. 2. Thermal  desorpt ion  spectra for a one -d imens iona l  chain  ca lculated at v = 1014 s e c - l ,  
Ed(O) = 3 5 k c a l / m o l e ,  and  lateral  interact ions  (in kcal /moIe) :  (a)e1  = 6, e, = - 4 / 3 ;  ( b ) e l  = 5, 
e, = - 2 / 3 ;  (c)  el = 4, e, = 0; (d) el = 3, e, = 2/3; (e) el = 2, e, = 4/3. The  initial coverages  are 
0 o = 0.25, 0.50, 0.75, and 0.95. The  heat ing rate is fl = 50 K/sec.  

(e) 
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the transfer matrix. The latter problem can be solved using standard 
numerical methods. 

The grand canonical distribution yields the following relationship 
between coverage and the chemical potential: 

0_=__T 0 in Z =  T ~ In 2 (10) 

Using this relationship, we can calculate the coverage dependence of the 
chemical potential and then obtain the desorption rate constant [-Eq. (3)]. 

It is also of interest to introduce the desorption activation energy. This 
value can be defined in various ways. The simplest one is 

E d ( O )  = - -  Tln(kd/V) 

Taking into account lateral interactions introduced 
obviously have 

Ed(0) -- Ed(1) = 2el + 2e2 + 3e, 

(11) 

by Eq.(6), we 

(12) 

Typically, the nearest-neighbor lateral interactions between adsorbed 
particles are repulsive, while the next-nearest-neighbor interactions are 
attractive. (1) We restrict our attention to this situation (e~ >0);  but to 
emphasize the effect of three-body forces on thermal desorption spectra, we 
set e2 = 0. 

Fig. 3. 

35 

33 

31 

29 

27 

I l I ! I I I ! 
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e 

Act iva t ion  energy for desorp t ion  as a funct ion of coverage.  La te ra l  in terac t ions  are 
the same as in Fig. 2. 
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Typical thermal desorption spectra calculated using the transfer- 
matrix method are shown in Fig. 2. The lateral interactions el and e, were 
chosen so that Ed(0 ) - -Ed(1)=  8 kcal/mole. The one-dimensional model is 
seen to predict two general qualitative features of spectra. First, the split- 
ting of thermal desorption peaks due to repulsive interactions is rather 
weak (Fig. 2e) and increases as el becomes more repulsive and e, more 
attractive (Fig. 2a). Second, the integral intensities of the peaks are equal 
to one another if the three-body forces are absent (this is a consequence of 
the symmetry of the lattice-gas model with pair interactions relative to the 
coverage 0 = 0.5); the repulsive three-body interactions (e, > 0) lead to an 
increase in the integral intensity of the high-temperature peak (Fig. 2e). 
These features of spectra are in good agreement with the coverage 
dependence of the desorption activation energy (Fig. 3). 

4. DESORPTION FROM A T W O - D I M E N S I O N A L  ADLAYER 

The two-dimensional Hamiltonian can be defined as 

H~- 2 ~lnil~j ~- 2 82Hit'lJ ~- 2 ~tnilTJ l'lk " (13) 
iNNj i N N N j  i : ~ j #  k 

where el, e2, and e, are lateral interactions explained in Fig. 4. 
Thermal desorption spectra (Fig. 5) have been simulated for a square 

lattice of N x N sites ( N =  150) with periodic boundary conditions follow- 
ing the Monte Carlo method described in ref. 9. The lateral interactions 
were chosen so that 

E a ( O )  - Ed(1 ) ~- 4el + 4e 24- 126 = 8 kcal/mole (14) 

In each temperature interval the coverage dependence of the desorption 
activation energy has been also obtained (Fig. 5f) by averaging the activa- 
tion energy over all molecules which actually desorbed in that interval. 

0 �9 0 0 0 0 0 �9 0 

1 1 1 
0 �9 0 0 @ 0 0 �9 @ 

0 0 �9 0 �9 �9 0 �9 �9 

E1 =~1 +E2 E1 =El +(2 +Et E1 = 3E1 +(~2 + 3Et 

Fig. 4. Particles on a square lattice. Occupied sites are indicated by solid circles, empty sites 
by empty circles. E1 is the energy of particle 1. 
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Fig. 5. Thermal  desorption spectra for a square lattice calculated at v = 1014 sec -z, Ea(O) = 

35kcal/mole, fl = 50 K/sec, and lateral interactions (in kcal/mole): (a) el = 3, e ,=  - 1/3; 
(b)~1=2.5,  e t = - 1 / 6 ;  (c) e1=2,  5 ,=0 ;  ( d ) e l = l . 5 ,  e t =  1/6; ( e ) e l = l ,  e~= 1/3, and e2=0.  
The initial coverages are 0.25, 0.50, 0.75, and 0.95. (f) The coverage dependence of the activa- 
tion energy for desorption. 
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To calculate thermal desorption spectra for a square lattice, we have 
also used the transfer-matrix technique. The application of this method to 
a two-dimensional case is as follows. The lattice is replaced by a strip of 
finite widths n and N along the X and Y directions. Periodic boundary con- 
ditions are used along the Y direction. Adding an additional row of sites 
to the right end of the strip and examining all possible occupation numbers 
of sites in rows n and n + 1, we obtain a relationship similar to Eq. (7). 
Thus, at n ~ oe the grand partition function is expressed through the 
largest eigenvalue of a transfer matrix [Eq. (9)], and the coverage is 
defined by [cf. Eq. (10)] 

T 0 1 n 2  
0 

N 6/~ 

Using this relationship, we can calculate the coverage dependence of the 
chemical potential. Experience shows that the transfer-matrix technique 
yields very good results already for small N, such as N =  4. In particular, 
thermal desorption spectra calculated on the basis of this approach are in 
good agreement with the Monte Carlo spectra (cf. Figs. 5 and 6). There 
exist, however, some minor differences. For example, the high-temperature 
peak in Fig. 6a is somewhat wider than the one in Fig. 5a. 

Figure 7 shows the phase diagrams of the adsorbed overlayer, as given 
in ref. 11, and the trajectories followed by the system during thermal 
desorption. Constructing Fig. 7, we have used the following relationship 
between the maximum critical temperature (i.e., Tc at 0 ~-0.5), T re=x, and 
lateral interactions: 

T m=x -~ 0.567(s I - -  8 2 -[- s t )  (15) 

(a) (b) 

4OO 450 500 550 4O0 45O 50o 550 

T, K 

Fig. 6. Thermal  desorption spectra for a square lattice calculated by the transfer-matrix 
technique. All parameters are the same as in Figs. 5a and 5e. 
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Schematic phase diagrams of an overlayer on a square lattice/m Dashed lines 
represent the trajectories followed by the system during thermal desorption. 

Equation (15) can be easily derived on the basis of arguments presented in 
ref. 11. 

The qualitative features of thermal desorption spectra can be connec- 
ted with a phase state of the adsorbed overlayer. In case (a), the system 
enters from the ordered (1 x 1 )+c (2  x2)  phase, passing then the ordered 
c(2 x2)  phase. In this region (0>0.5) ,  the desorption activation energy 
decreases with decreasing coverage (Fig. 6a) due to the attractive inter- 
actions e,, and desorption is self-accelerating. The presence of the ordered 
phase at 0~0.5  and the absence of the order at 0 < 0.5 result in two sharp 
and well-separated peaks. Case (b) is similar to case (a). 

In case (c), the peak widths are much greater than in the former cases 
due to the fact that the ordered c(2 x 2) phase exists only in the narrow 
range of coverages near 0 = 0.5, and various configurations contribute to 
desorption. In cases (d) and (e), desorption occurs at T >  Tc and the peaks 
are wide. 

The qualitative features of thermal desorption spectra for a one-dimen- 
sional chain and for a two-dimensional square lattice are very similar 
(cf. Figs. 2 and 5). In particular, the repulsive three-body interactions are 
seen (Figs. 2e and 5e) to lead to an increase in the integral intensity of the 
high-temperature peak. 

5. C O N C L U S I O N  

In our simulations we have used parameters typical for CO desorption 
from close-packed faces of Ni, Pd, Pt, Rh, and Ru single crystals. The 
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results presented in Figs. 2 and 5 (especially the results for the three-body 
repulsive interactions) reproduce qualitatively the various features of the 
real thermal desorption spectra [cf. Fig. 37(i k) in ref. 12]. However, the 
experimental data as a whole are somewhat more complex than the 
theoretical results. This is explained as follows. First, the real lateral inter- 
actions and locations of adsorbed particles are more diverse than those 
considered in this paper. Second, the adsorbate-induced changes in the 
surface should be apparently incorporated into the theory to interpret 
experimental thermal desorption spectra. (13) 

REFERENCES 

1. V. P. Zhdanov and K. I. Zamaraev, Usp. Fiz, Nauk 149:635 (1986) [English translation: 
Soy. Phys. Uspekhi 29:755 (1986)]. 

2. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 
1982). 

3. D. A. King, Crit. Rev. Solid State Mater. Sci. 7:167 (1978). 
4. D. L. Adams, Surface Sci. 42:12 (1974). 
5. V. P. Zhdanov, Surface Sci. 111:63 (1981). 
6. V. P. Zhdanov, Surface Sci. 133:469 (1983). 
7. V. P. Zhdanov, Surface Sci. 123:106 (1982); 137:515 (1984); 169:1 (1981); 179:L57 (1987); 

J. B. Benziger and G. R. Schoofs, J. Phys. Chem. 88:4439 (1984); S. Sundaresan and K. R. 
Kaza, Surface Sci. 160:103 (1985); Chem. Eng. Commun. 32:333 (1985); 35:1 (1985); 
H. Pak and J. W. Evans, Surface Sci. 186:550 (1987); J.W. Evans, D. K. Hoffman, and 
H. Pak, Surface Sci. 192:475 (1987); H. J. Kreuzer and H. S. Payne, Surface Sci. 198:235 
(1988); 200:L433 (1988); 205:153 (1988); B. Hellsing and V.P. Zhdanov, Chem. Phys. 
Lett. 147:613 (1988). 

8. M. E. Bridge and R. M. Lambert, Proc. R. Soc. Lond. A 370:545 (1980); Surface Sci. 
94:469 (1980); M. Silverberg, A. Ben-Shaul, and F. Robentrost, J. Chem. Phys. 83:6501 
(1985); M. Silverberg and A. Ben-Shaul, Chem. Phys. Lett. 134:491 (1987); J. Chem. Phys. 
87:3178 (1987); J. Stat. Phys. 52:1179 (1988); M. Stiles and H. Metiu, Chem. Phys. Lett. 
128:337 (1986); D. Gupta and C. S. Hirtzel, Chem. Phys. Lett. 149:527 (1988); Surface Sci. 
210:322 (1989); J. W. Evans and H. Pak, Surface Sci. 199:28 (1988); S. J. Lombardo and 
A. T. Bell, Surface Sci. 206!101 (1988). 

9. J. L. Sales and G. Zgrablich, Surface Sci. 187:1 (1987); Phys. Rev. B 35:9520 (1987). 
10. J. L. Sales, G. Zgrablich, and V. P. Zhdanov, Surface Sci. 209:208 (1989). 
11. K. Binder and D. P. Landau, Surface Sei. 108:503 (1981). 
12. M. A. Morris, M. Bowker, and D. A. King, Comp. Chem. Kinet. 19:163 (1984). 
13. V. P. Zhdanov, Surface Sci. 209:523 (1989). 


